Tensor subspace Tracking via Kronecker structured projections (TeTraKron) for time-varying multidimensional harmonic retrieval

نویسندگان

  • Yao Cheng
  • Florian Roemer
  • Olaa Khatib
  • Martin Haardt
چکیده

We present a framework for Tensor-based subspace Tracking via Kronecker-structured projections (TeTraKron). TeTraKron allows to extend arbitrary matrix-based subspace tracking schemes to track the tensor-based subspace estimate. The latter can be computed via a structured projection applied to the matrix-based subspace estimate which enforces the multi-dimensional structure in a computationally efficient fashion. This projection is tracked by considering all matrix rearrangements of the signal tensor jointly, which can be efficiently realized via parallel processing. In addition, we incorporate forward-backward-averaging and find a similar link between the real-valued matrix-based and tensor-based subspace estimation. This enables the tracking of the real-valued tensor-based subspace estimate via a similar Kronecker-structured projection applied to the real-valued matrix-based subspace estimate. In time-varying multidimensional harmonic retrieval problems, the TeTraKron-based subspace tracking schemes outperform the original matrix-based subspace tracking algorithms as well as the batch solutions provided by the SVD and the HOSVD. Moreover, incorporating forward-backward-averaging leads to an improved accuracy of the subspace tracking, and only real-valued processing is involved. Furthermore, we evaluate the performances of ESPRIT-type parameter estimation schemes where the subspace estimates obtained by the proposed TeTraKron-based subspace tracking algorithms are used for the tracking of spatial frequencies in time-varying scenarios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sample, computation vs storage tradeoffs for classification using tensor subspace models

In this paper, we exhibit the tradeoffs between (training) sample, computation and storage complexity for the problem of supervised classification using signal subspace estimation. Our main tool is the use of tensor subspaces, i.e. subspaces with a Kronecker structure, for embedding the data into lower dimensions. Among the subspaces with a Kronecker structure, we show that using subspaces with...

متن کامل

Numerical Solution of Optimal Control of Time-varying Singular Systems via Operational Matrices

In this paper, a numerical method for solving the constrained optimal control of time-varying singular systems with quadratic performance index is presented. Presented method is based on Bernste in polynomials. Operational matrices of integration, differentiation and product are introduced and utilized to reduce the optimal control of time-varying singular problems to the solution of algebraic ...

متن کامل

Principal Component Analysis with Tensor Train Subspace

Tensor train is a hierarchical tensor network structure that helps alleviate the curse of dimensionality by parameterizing large-scale multidimensional data via a set of network of low-rank tensors. Associated with such a construction is a notion of Tensor Train subspace and in this paper we propose a TTPCA algorithm for estimating this structured subspace from the given data. By maintaining lo...

متن کامل

A survey of multilinear subspace learning for tensor data

Increasingly large amount of multidimensional data are being generated on a daily basis in many applications. This leads to a strong demand for learning algorithms to extract useful information from these massive data. This paper surveys the field of multilinear subspace learning (MSL) for dimensionality reduction of multidimensional data directly from their tensorial representations. It discus...

متن کامل

Sequential Gsvd Based Prewhitening for Multidimensional Hosvd Based Subspace Estimation

Recently, R-dimensional subspace-based parameter estimation techniques have been improved by exploiting the tensor structure already in the subspace estimation step via a Higher Order Singular Value Decompostion (HOSVD) based low-rank approximation. Often this parameter estimation is performed in the presence of colored noise or interference, which can severely degrade the estimation accuracy. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014